0%

(CVPR 2018) Frame-Recurrent Video Super-Resolution

Keyword [ESPCN] [Pixel Shuffle] [Optical Flow] [FlowNet]

Sajjadi M S M, Vemulapalli R, Brown M. Frame-recurrent video super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6626-6634.



1. Overview


目前的視頻SR任务使用CNN+motion compensation方法,通过多个LR帧生成一个LR帧。当前State-of-art方法使用sliding window实现,但存在缺陷:

  • 计算冗余. 多帧被重复计算
  • 独立估计每帧. 限制了temporally consistent results

因此,论文提出frame-recurrent video super-resolution (FRVSR)框架,previous HR estimate参与到当前帧的预测 (optical flow warping)

  • Temporally consistent result
  • 降低计算量. 相比于sliding window, 每帧只计算一次
  • Assimilate a large number of previous frame
  • No pre-train, end-to-end
  • 处理任意size, length视频

1.1. 模型





1.2. 数据集

1.2.1. 训练集

  • vimeo.com下载40个HR视频,downsmaple 2倍
  • Extract 256x256 patch
  • Gaussian blur. 方差1.5
  • 提取相似场景连续帧

1.2.2. 测试集

  • youtube.com下载3-5s HR视频(YT10)

1.3. Future Work

  • Occluded region
  • Application. video compression
  • Loss term. GAN, EnhenceNet.

1.4. 相关工作

  • Interpolation
    Bilinear, Bicubic, Lanczos
  • Example-Based
  • Dictionary Learning
  • Self-similarity

(Deep Learning)

  • GAN
  • Multi-frame (Expensive)
  • Optical Flow
  • Conv-LSTM
  • Bidirectional Recurrent Architecture



2. Experiments


2.1. Baseline

  • SISR. LR输入SRNet
  • VSR. sliding window, warp t+1, t-1 to t帧, concate输入SRNet

2.2. 实验结果




2.3. Blur Size



2.4. Training Clip Length



2.5. Degraded Input



2.6. Temporal Consistent



2.7. Range of Information Flow




2.8. Network Size